Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cancer Ther ; 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38412481

RESUMEN

Therapies that abrogate persistent androgen receptor (AR) signaling in castration resistant prostate cancer (CRPC) remain an unmet clinical need. The N-terminal domain (NTD) of the AR that drives transcriptional activity in CRPC remains a challenging therapeutic target. Herein we demonstrate that BAG-1 mRNA is highly expressed and associates with signaling pathways, including AR signaling, that are implicated in the development and progression of CRPC. In addition, interrogation of geometric and physiochemical properties of the BAG domain of BAG-1 isoforms identifies it to be a tractable but challenging drug target. Furthermore, through BAG-1 isoform mouse knockout studies we confirm that BAG-1 isoforms regulate hormone physiology and that therapies targeting the BAG domain will be associated with limited 'on-target' toxicity. Importantly, the postulated inhibitor of BAG-1 isoforms, Thio-2, suppressed AR signaling and other important pathways implicated in the development and progression of CRPC to reduce the growth of treatment resistant prostate cancer cell lines and patient derived models. However, the mechanism by which Thio-2 elicits the observed phenotype needs further elucidation since the genomic abrogation of BAG-1 isoforms was unable to recapitulate the Thio-2 mediated phenotype. Overall, these data support the interrogation of related compounds with improved drug-like properties as a novel therapeutic approach in CRPC, and further highlight the clinical potential of treatments that block persistent AR signaling which are currently undergoing clinical evaluation in CRPC.

2.
Nucleic Acids Res ; 51(D1): D1212-D1219, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36624665

RESUMEN

canSAR (https://cansar.ai) is the largest public cancer drug discovery and translational research knowledgebase. Now hosted in its new home at MD Anderson Cancer Center, canSAR integrates billions of experimental measurements from across molecular profiling, pharmacology, chemistry, structural and systems biology. Moreover, canSAR applies a unique suite of machine learning algorithms designed to inform drug discovery. Here, we describe the latest updates to the knowledgebase, including a focus on significant novel data. These include canSAR's ligandability assessment of AlphaFold; mapping of fragment-based screening data; and new chemical bioactivity data for novel targets. We also describe enhancements to the data and interface.


Asunto(s)
Antineoplásicos , Descubrimiento de Drogas , Bases del Conocimiento , Investigación Biomédica Traslacional , Humanos , Algoritmos , Neoplasias/tratamiento farmacológico , Neoplasias/genética
3.
Plant Physiol Biochem ; 194: 236-245, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36436414

RESUMEN

Sirtuins are part of a gene family of NAD-dependent deacylases that act on histone and non-histone proteins and control a variety of activities in all living organisms. Their roles are mainly related to energy metabolism and include lifetime regulation, DNA repair, stress resistance, and proliferation. A large amount of knowledge concerning animal sirtuins is available, but data about their plant counterparts are scarce. Plants possess few sirtuins that have, like in animals, a recognized role in stress defense and metabolism regulation. However, engagement in proliferation control, which has been demonstrated for mammalian sirtuins, has not been reported for plant sirtuins so far. In this work, srt1 and srt2 Arabidopsis mutant seedlings have been used to evaluate in vivo the role of sirtuins in cell proliferation and regulation of glutamate dehydrogenase, an enzyme demonstrated to be involved in the control of cell cycle in SIRT4-defective human cells. Moreover, bioinformatic analyses have been performed to elucidate sequence, structure, and function relationships between Arabidopsis sirtuins and between each of them and the closest mammalian homolog. We found that cell proliferation and GDH activity are higher in mutant seedlings, suggesting that both sirtuins exert a physiological inhibitory role in these processes. In addition, mutant seedlings show plant growth and root system improvement, in line with metabolic data. Our data also indicate that utilization of an easy to manipulate organism, such as Arabidopsis plant, can help to shed light on the molecular mechanisms underlying the function of genes present in interkingdom species.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Sirtuinas , Animales , Humanos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proliferación Celular , Glutamato Deshidrogenasa/genética , Glutamato Deshidrogenasa/metabolismo , Histonas , Mamíferos/metabolismo , Sirtuinas/genética , Sirtuinas/química , Sirtuinas/metabolismo
4.
FEBS J ; 289(1): 183-198, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34252269

RESUMEN

Neuropilin-1 (NRP-1) is a semaphorin receptor involved in neuron guidance, and a co-receptor for selected isoforms of the vascular endothelial growth factor (VEGF) family. NRP-1 binding to several VEGF-A isoforms promotes growth factor interaction with VEGF receptor (VEGFR)-2, increasing receptor phosphorylation. Additionally, NRP-1 directly interacts with VEGFR-1, but this interaction competes with NRP-1 binding to VEGF-A165 and does not enhance VEGFR-1 activation. In this work, we investigated in detail the role of NRP-1 interaction with the soluble isoform of VEGFR-1 (sVEGFR-1) in angiogenesis. sVEGFR-1 acts both as a decoy receptor for VEGFs and as an extracellular matrix protein directly binding to α5ß1 integrin on endothelial cells. By combining cell adhesion assays and surface plasmon resonance experiments on purified proteins, we found that sVEGFR-1/NRP-1 interaction is required both for α5ß1 integrin binding to sVEGFR-1 and for endothelial cell adhesion to a sVEGFR-1-containing matrix. We also found that a previously reported anti-angiogenic peptide (Flt2-11 ), which maps in the second VEGFR-1 Ig-like domain, specifically binds NRP-1 and inhibits NRP-1/sVEGFR-1 interaction, a process that likely contributes to its anti-angiogenic activity. In view of potential translational applications, we developed a five-residue-long peptide, derived from Flt2-11 , which has the same ability as the parent Flt2-11 peptide to inhibit cell adhesion to, and migration towards, sVEGFR-1. Therefore, the Flt2-5 peptide represents a potential anti-angiogenic compound per se, as well as an attractive lead for the development of novel angiogenesis inhibitors acting with a different mechanism with respect to currently used therapeutics, which interfere with VEGF-A165 binding.


Asunto(s)
Adhesión Celular/genética , Neuropilina-1/genética , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Movimiento Celular/genética , Células Endoteliales/metabolismo , Humanos , Neovascularización Patológica/genética , Neovascularización Fisiológica/genética , Neuronas/metabolismo , Fosforilación/genética , Unión Proteica/genética , Transducción de Señal/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética
5.
J Phys Chem Lett ; 12(1): 49-58, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33300337

RESUMEN

Water plays a key role in biomolecular recognition and binding. Despite the development of several computational and experimental approaches, it is still challenging to comprehensively characterize water-mediated effects on the binding process. Here, we investigate how water affects the binding of Src kinase to one of its inhibitors, PP1. Src kinase is a target for treating several diseases, including cancer. We use biased molecular dynamics simulations, where the hydration of predetermined regions is tuned at will. This computational technique efficiently accelerates the SRC-PP1 binding simulation and allows us to identify several key and yet unexplored aspects of the solvent's role. This study provides a further perspective on the binding phenomenon, which may advance the current drug design approaches for the development of new kinase inhibitors.


Asunto(s)
Inhibidores de Proteínas Quinasas/metabolismo , Familia-src Quinasas/metabolismo , Ligandos , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Inhibidores de Proteínas Quinasas/farmacología , Termodinámica , Familia-src Quinasas/antagonistas & inhibidores , Familia-src Quinasas/química
6.
Nucleic Acids Res ; 49(D1): D1074-D1082, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33219674

RESUMEN

canSAR (http://cansar.icr.ac.uk) is the largest, public, freely available, integrative translational research and drug discovery knowledgebase for oncology. canSAR integrates vast multidisciplinary data from across genomic, protein, pharmacological, drug and chemical data with structural biology, protein networks and more. It also provides unique data, curation and annotation and crucially, AI-informed target assessment for drug discovery. canSAR is widely used internationally by academia and industry. Here we describe significant developments and enhancements to the data, web interface and infrastructure of canSAR in the form of the new implementation of the system: canSARblack. We demonstrate new functionality in aiding translation hypothesis generation and experimental design, and show how canSAR can be adapted and utilised outside oncology.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Descubrimiento de Drogas/métodos , Bases del Conocimiento , Neoplasias/genética , Investigación Biomédica Traslacional/métodos , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Minería de Datos/métodos , Genómica/métodos , Humanos , Internet , Oncología Médica/métodos , Estructura Molecular , Neoplasias/metabolismo , Proteómica/métodos , Interfaz Usuario-Computador
7.
Nucleic Acids Res ; 47(D1): D917-D922, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30496479

RESUMEN

canSAR (http://cansar.icr.ac.uk) is a public, freely available, integrative translational research and drug discovery knowlegebase. canSAR informs researchers to help solve key bottlenecks in cancer translation and drug discovery. It integrates genomic, protein, pharmacological, drug and chemical data with structural biology, protein networks and unique, comprehensive and orthogonal 'druggability' assessments. canSAR is widely used internationally by academia and industry. Here we describe major enhancements to canSAR including new and expanded data. We also describe the first components of canSARblack-an advanced, responsive, multi-device compatible redesign of canSAR with a question-led interface.


Asunto(s)
Antineoplásicos , Bases de Datos Farmacéuticas , Descubrimiento de Drogas , Bases del Conocimiento , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Conformación Proteica , Mapeo de Interacción de Proteínas , Investigación Biomédica Traslacional , Interfaz Usuario-Computador
8.
J Control Release ; 275: 177-185, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29474961

RESUMEN

A genetically engineered human ferritin heavy chain (HFt)-based construct has been recently shown by our group to efficiently entrap and deliver doxorubicin to cancer cells. This construct, named HFt-MP-PAS, contained a tumor-selective sequence (MP) responsive to proteolytic cleavage by tumor proteases (MMPs), located between each HFt subunit and an outer shielding polypeptide sequence rich in proline (P), serine (S) and alanine (A) residues (PAS). HFt-MP-PAS displayed excellent therapeutic efficacy in xenogenic pancreatic and head and neck cancer models in vivo, leading to a significant increase in overall animal survivals. Here we report a new construct obtained by the genetic insertion of two glutamate residues in the PAS sequence of HFt-MP-PAS. Such new construct, named HFt-MP-PASE, is characterized by improved performances as drug biodistribution in a xenogenic pancreatic cancer model in vivo. Moreover, HFt-MP-PASE efficiently encapsulates the anti-cancer drug mitoxantrone (MIT), and the resulting MIT-loaded nanoparticles proved to be more soluble and monodispersed than the HFt-MP-PAS counterparts. Importantly, in vitro MIT-loaded HFt-MP-PASE kills several cancer cell lines of different origin (colon, breast, sarcoma and pancreas) at least as efficiently as the free drug. Finally, our MIT loaded protein nanocages allowed in vivo an impressive incrementing of the drug accumulation in the tumor with respect to the free drug.


Asunto(s)
Antineoplásicos/administración & dosificación , Apoferritinas/administración & dosificación , Doxorrubicina/administración & dosificación , Portadores de Fármacos/administración & dosificación , Ácido Glutámico/administración & dosificación , Mitoxantrona/administración & dosificación , Nanopartículas/administración & dosificación , Línea Celular Tumoral , Humanos , Distribución Tisular
9.
JCO Clin Cancer Inform ; 2: 1-11, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30652614

RESUMEN

PURPOSE: The high attrition rate of cancer drug development programs is a barrier to realizing the promise of precision oncology. We have examined whether the genetic insights from genome-wide association studies of cancer can guide drug development and repurposing in oncology. MATERIALS AND METHODS: Across 37 cancers, we identified 955 genetic risk variants from the National Human Genome Research Institute-European Bioinformatics Institute genome-wide association study catalog. We linked these variants to target genes using strategies that were based on linkage disequilibrium, DNA three-dimensional structure, and integration of predicted gene function and expression. With the use of the Informa Pharmaprojects database, we identified genes that are targets of unique drugs and assessed the level of enrichment that would be afforded by incorporation of genetic information in preclinical and phase II studies. For targets not under development, we implemented machine learning approaches to assess druggability. RESULTS: For all preclinical targets incorporating genetic information, a 2.00-fold enrichment of a drug being successfully approved could be achieved (95% CI, 1.14- to 3.48-fold; P = .02). For phase II targets, a 2.75-fold enrichment could be achieved (95% CI, 1.42- to 5.35-fold; P < .001). Application of genetic information suggests potential repurposing of 15 approved nononcology drugs. CONCLUSION: The findings illustrate the value of using insights from the genetics of inherited cancer susceptibility discovery projects as part of a data-driven strategy to inform drug discovery. Support for cancer germline genetic information for prospective targets is available online from the Institute of Cancer Research.


Asunto(s)
Desarrollo de Medicamentos/métodos , Predisposición Genética a la Enfermedad/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Humanos
10.
Sci Rep ; 7: 41559, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28139767

RESUMEN

Endoribonucleases participate in almost every step of eukaryotic RNA metabolism, acting either as degradative or biosynthetic enzymes. We previously identified the founding member of the Eukaryotic EndoU ribonuclease family, whose components display unique biochemical features and are flexibly involved in important biological processes, such as ribosome biogenesis, tumorigenesis and viral replication. Here we report the discovery of the CG3303 gene product, which we named DendoU, as a novel family member in Drosophila. Functional characterisation revealed that DendoU is essential for Drosophila viability and nervous system activity. Pan-neuronal silencing of dendoU resulted in fly immature phenotypes, highly reduced lifespan and dramatic motor performance defects. Neuron-subtype selective silencing showed that DendoU is particularly important in cholinergic circuits. At the molecular level, we unveiled that DendoU is a positive regulator of the neurodegeneration-associated protein dTDP-43, whose downregulation recapitulates the ensemble of dendoU-dependent phenotypes. This interdisciplinary work, which comprehends in silico, in vitro and in vivo studies, unveils a relevant role for DendoU in Drosophila nervous system physio-pathology and highlights that DendoU-mediated neurotoxicity is, at least in part, contributed by dTDP-43 loss-of-function.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/metabolismo , Endorribonucleasas/genética , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Drosophila/genética , Endorribonucleasas/metabolismo , Perfilación de la Expresión Génica , Silenciador del Gen , Mutación con Pérdida de Función , Actividad Motora , Neuronas/metabolismo , Fenotipo , Análisis de Secuencia de ADN
11.
Hum Mol Genet ; 25(5): 903-15, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26721932

RESUMEN

Mutations in mitochondrial (mt) genes coding for mt-tRNAs are responsible for a range of syndromes, for which no effective treatment is available. We recently showed that the carboxy-terminal domain (Cterm) of human mt-leucyl tRNA synthetase rescues the pathologic phenotype associated either with the m.3243A>G mutation in mt-tRNA(Leu(UUR)) or with mutations in the mt-tRNA(Ile), both of which are aminoacylated by Class I mt-aminoacyl-tRNA synthetases (mt-aaRSs). Here we show, by using the human transmitochondrial cybrid model, that the Cterm is also able to improve the phenotype caused by the m.8344A>G mutation in mt-tRNA(Lys), aminoacylated by a Class II aaRS. Importantly, we demonstrate that the same rescuing ability is retained by two Cterm-derived short peptides, ß30_31 and ß32_33, which are effective towards both the m.8344A>G and the m.3243A>G mutations. Furthermore, we provide in vitro evidence that these peptides bind with high affinity wild-type and mutant human mt-tRNA(Leu(UUR)) and mt-tRNA(Lys), and stabilize mutant mt-tRNA(Leu(UUR)). In conclusion, we demonstrate that small Cterm-derived peptides can be effective tools to rescue cellular defects caused by mutations in a wide range of mt-tRNAs.


Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Mitocondrias/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Péptidos/farmacología , Mutación Puntual , Secuencia de Aminoácidos , Aminoacil-ARNt Sintetasas/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Expresión Génica , Humanos , Síndrome MELAS/genética , Síndrome MELAS/metabolismo , Síndrome MELAS/patología , Síndrome MERRF/genética , Síndrome MERRF/metabolismo , Síndrome MERRF/patología , Mitocondrias/metabolismo , Mitocondrias/patología , Modelos Moleculares , Datos de Secuencia Molecular , Osteoblastos/metabolismo , Osteoblastos/patología , Péptidos/síntesis química , Fenotipo , Dominios Proteicos , Estructura Secundaria de Proteína , ARN de Transferencia de Leucina/metabolismo , ARN de Transferencia de Lisina/metabolismo , Alineación de Secuencia
12.
Bioengineered ; 6(5): 299-302, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26186119

RESUMEN

We have recently characterized the degradation profiles of 2 human IgG1 monoclonal antibodies, the tumor-targeting mAb H10 and the anti-HIV mAb 2G12. Both mAbs were produced in plants either as stable transgenics or using a transient expression system based on leaf agroinfiltration. The purified antibodies were separated by 1DE and protein bands were characterized by N-terminal sequencing. The proteolytic cleavage sites identified in the heavy chain (HC) of both antibodies were localized in 3 inter-domain regions, suggesting that the number of proteolytic cleavage events taking place in plants is limited. One of the cleavage sites, close to the hinge region, was common to both antibodies.


Asunto(s)
Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/metabolismo , Plantas Modificadas Genéticamente/química , Plantas Modificadas Genéticamente/metabolismo , Ingeniería de Proteínas/métodos , Proteolisis , Secuencia de Aminoácidos , Anticuerpos Monoclonales/genética , Sitios de Unión , Humanos , Datos de Secuencia Molecular , Plantas Modificadas Genéticamente/genética , Unión Proteica
13.
Plant Biotechnol J ; 13(2): 235-45, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25283551

RESUMEN

Plants are promising hosts for the production of monoclonal antibodies (mAbs). However, proteolytic degradation of antibodies produced both in stable transgenic plants and using transient expression systems is still a major issue for efficient high-yield recombinant protein accumulation. In this work, we have performed a detailed study of the degradation profiles of two human IgG1 mAbs produced in plants: an anti-HIV mAb 2G12 and a tumour-targeting mAb H10. Even though they use different light chains (κ and λ, respectively), the fragmentation pattern of both antibodies was similar. The majority of Ig fragments result from proteolytic degradation, but there are only a limited number of plant proteolytic cleavage events in the immunoglobulin light and heavy chains. All of the cleavage sites identified were in the proximity of interdomain regions and occurred at each interdomain site, with the exception of the VL /CL interface in mAb H10 λ light chain. Cleavage site sequences were analysed, and residue patterns characteristic of proteolytic enzymes substrates were identified. The results of this work help to define common degradation events in plant-produced mAbs and raise the possibility of predicting antibody degradation patterns 'a priori' and designing novel stabilization strategies by site-specific mutagenesis.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Inmunoglobulina G/metabolismo , Nicotiana/genética , Proteolisis , Secuencia de Aminoácidos , Anticuerpos Monoclonales/química , Glicosilación , Immunoblotting , Datos de Secuencia Molecular , Plantas Modificadas Genéticamente , Análisis de Secuencia de Proteína
14.
Biochim Biophys Acta ; 1843(12): 3065-74, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25261707

RESUMEN

We have previously established a yeast model of mitochondrial (mt) diseases. We showed that defective respiratory phenotypes due to point-mutations in mt tRNA(Leu(UUR)), tRNA(Ile) and tRNA(Val) could be relieved by overexpression of both cognate and non-cognate nuclearly encoded mt aminoacyl-tRNA synthetases (aaRS) LeuRS, IleRS and ValRS. More recently, we showed that the isolated carboxy-terminal domain (Cterm) of yeast mt LeuRS, and even short peptides derived from the human Cterm, have the same suppressing abilities as the whole enzymes. In this work, we extend these results by investigating the activity of a number of mt aaRS from either class I or II towards a panel of mt tRNAs. The Cterm of both human and yeast mt LeuRS has the same spectrum of activity as mt aaRS belonging to class I and subclass a, which is the most extensive among the whole enzymes. Yeast Cterm is demonstrated to be endowed with mt targeting activity. Importantly, peptide fragments ß30_31 and ß32_33, derived from the human Cterm, have even higher efficiency as well as wider spectrum of activity, thus opening new avenues for therapeutic intervention. Bind-shifting experiments show that the ß30_31 peptide directly interacts with human mt tRNA(Leu(UUR)) and tRNA(Ile), suggesting that the rescuing activity of isolated peptide fragments is mediated by a chaperone-like mechanism. Wide-range suppression appears to be idiosyncratic of LeuRS and its fragments, since it is not shared by Cterminal regions derived from human mt IleRS or ValRS, which are expected to have very different structures and interactions with tRNAs.

15.
EMBO Mol Med ; 6(2): 169-82, 2014 02.
Artículo en Inglés | MEDLINE | ID: mdl-24413190

RESUMEN

Mitochondrial (mt) diseases are multisystem disorders due to mutations in nuclear or mtDNA genes. Among the latter, more than 50% are located in transfer RNA (tRNA) genes and are responsible for a wide range of syndromes, for which no effective treatment is available at present. We show that three human mt aminoacyl-tRNA syntethases, namely leucyl-, valyl-, and isoleucyl-tRNA synthetase are able to improve both viability and bioenergetic proficiency of human transmitochondrial cybrid cells carrying pathogenic mutations in the mt-tRNA(Ile) gene. Importantly, we further demonstrate that the carboxy-terminal domain of human mt leucyl-tRNA synthetase is both necessary and sufficient to improve the pathologic phenotype associated either with these "mild" mutations or with the "severe" m.3243A>G mutation in the mt-tRNA(L)(eu(UUR)) gene. Furthermore, we provide evidence that this small, non-catalytic domain is able to directly and specifically interact in vitro with human mt-tRNA(Leu(UUR)) with high affinity and stability and, with lower affinity, with mt-tRNA(Ile). Taken together, our results sustain the hypothesis that the carboxy-terminal domain of human mt leucyl-tRNA synthetase can be used to correct mt dysfunctions caused by mt-tRNA mutations.


Asunto(s)
Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/metabolismo , Mitocondrias/enzimología , Mitocondrias/genética , Mutación/genética , ARN de Transferencia de Leucina/genética , Supervivencia Celular , Metabolismo Energético , Humanos , Péptidos/metabolismo , Fenotipo , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas
16.
Int J Nanomedicine ; 7: 1489-509, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22619508

RESUMEN

BACKGROUND: Nanoparticle-based systems are promising for the development of imaging and therapeutic agents. The main advantage of nanoparticles over traditional systems lies in the possibility of loading multiple functionalities onto a single molecule, which are useful for therapeutic and/or diagnostic purposes. These functionalities include targeting moieties which are able to recognize receptors overexpressed by specific cells and tissues. However, targeted delivery of nanoparticles requires an accurate system design. We present here a rationally designed, genetically engineered, and chemically modified protein-based nanoplatform for cell/tissue-specific targeting. METHODS: Our nanoparticle constructs were based on the heavy chain of the human protein ferritin (HFt), a highly symmetrical assembly of 24 subunits enclosing a hollow cavity. HFt-based nanoparticles were produced using both genetic engineering and chemical functionalization methods to impart several functionalities, ie, the α-melanocyte-stimulating hormone peptide as a melanoma-targeting moiety, stabilizing and HFt-masking polyethylene glycol molecules, rhodamine fluorophores, and magnetic resonance imaging agents. The constructs produced were extensively characterized by a number of physicochemical techniques, and assayed for selective melanoma-targeting in vitro and in vivo. RESULTS: Our HFt-based nanoparticle constructs functionalized with the α-melanocyte-stimulating hormone peptide moiety and polyethylene glycol molecules were specifically taken up by melanoma cells but not by other cancer cell types in vitro. Moreover, experiments in melanoma-bearing mice indicate that these constructs have an excellent tumor-targeting profile and a long circulation time in vivo. CONCLUSION: By masking human HFt with polyethylene glycol and targeting it with an α-melanocyte-stimulating hormone peptide, we developed an HFt-based melanoma-targeting nanoplatform for application in melanoma diagnosis and treatment. These results could be of general interest, because the same strategy can be exploited to develop ad hoc nanoplatforms for specific delivery towards any cell/tissue type for which a suitable targeting moiety is available.


Asunto(s)
Nanopartículas de Magnetita , Melanoma Experimental/diagnóstico , Animales , Apoferritinas/química , Sistemas de Liberación de Medicamentos , Colorantes Fluorescentes/química , Células HT29 , Humanos , Imagen por Resonancia Magnética , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestructura , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Microscopía Electrónica de Transmisión , Nanomedicina , Nanotecnología , Polietilenglicoles/química , Estabilidad Proteica , Proteínas Recombinantes/química , alfa-MSH/química
17.
Structure ; 20(3): 429-39, 2012 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-22405002

RESUMEN

2-Cys peroxiredoxins (Prxs) play two different roles depending on the physiological status of the cell. They are thioredoxin-dependent peroxidases under low oxidative stress and ATP-independent chaperones upon exposure to high peroxide concentrations. These alternative functions have been associated with changes in the oligomerization state from low-(LMW) to high-molecular-weight (HMW) species. Here we present the structures of Schistosoma mansoni PrxI in both states: the LMW decamer and the HMW 20-mer formed by two stacked decamers. The latter is the structure of a 2-Cys Prx chaperonic form. Comparison of the structures sheds light on the mechanism by which chemical stressors, such as high H(2)O(2) concentration and acidic pH, are sensed and translated into a functional switch in this protein family. We also propose a model to account for the in vivo formation of long filaments of stacked Prx rings.


Asunto(s)
Modelos Químicos , Modelos Moleculares , Peroxirredoxinas/química , Conformación Proteica , Schistosoma mansoni/química , Animales , Cristalografía por Rayos X , Chaperonas Moleculares/química , Peroxidasa/química
18.
Hum Mol Genet ; 21(1): 85-100, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-21945886

RESUMEN

The genetic and epigenetic factors underlying the variable penetrance of homoplasmic mitochondrial DNA mutations are poorly understood. We investigated a 16-year-old patient with hypertrophic cardiomyopathy harboring a homoplasmic m.4277T>C mutation in the mt-tRNA(Ile) (MTTI) gene. Skeletal muscle showed multiple respiratory chain enzyme abnormalities and a decreased steady-state level of the mutated mt-tRNA(Ile). Transmitochondrial cybrids grown on galactose medium demonstrated a functional effect of this mutation on cell viability, confirming pathogenicity. These findings were reproduced in transmitochondrial cybrids, harboring a previously described homoplasmic m.4300A>G MTTI mutation. The pathogenic role of the m.4277T>C mutation may be ascribed to misfolding of the mt-tRNA molecule, as demonstrated by the altered electrophoretic migration of the mutated mt-tRNA. Indeed, structure and sequence analyses suggest that thymidine at position 4277 of mt-tRNA(Ile) is involved in a conserved tertiary interaction with thymidine at position 4306. Interestingly, the mutation showed variable penetrance within family members, with skeletal muscle from the patient's clinically unaffected mother demonstrating normal muscle respiratory chain activities and steady-state levels of mt-tRNA(Ile), while homoplasmic for the m.4277T>C mutation. Analysis of mitochondrial isoleucyl-tRNA synthetase revealed significantly higher expression levels in skeletal muscle and fibroblasts of the unaffected mother when compared with the proband, while the transient over-expression of the IARS2 gene in patient transmitochondrial cybrids improved cell viability. This is the first observation that constitutively high levels of aminoacyl-tRNA synthetases (aaRSs) in human tissues prevent the phenotypic expression of a homoplasmic mt-tRNA point mutation. These findings extend previous observations on aaRSs therapeutic effects in yeast and human.


Asunto(s)
Cardiomiopatía Hipertrófica/enzimología , Cardiomiopatía Hipertrófica/genética , Isoleucina-ARNt Ligasa/metabolismo , Penetrancia , Mutación Puntual , ARN de Transferencia de Isoleucina/genética , Adolescente , Secuencia de Bases , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Humanos , Isoleucina-ARNt Ligasa/genética , Masculino , Mitocondrias/genética , Mitocondrias/metabolismo , Datos de Secuencia Molecular , ARN de Transferencia de Isoleucina/metabolismo
19.
RNA ; 17(11): 1983-96, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21914842

RESUMEN

Previous work has demonstrated the usefulness of the yeast model to investigate the molecular mechanisms underlying defects due to base substitutions in mitochondrial tRNA genes, and to identify suppressing molecules endowed with potential clinical relevance. The present paper extends these investigations to two human equivalent yeast mutations located at positions 32 and 33 in the anticodon loop of tRNA(Ile). Notwithstanding the proximity of the two T>C base substitutions, the effects of these mutations have been found to be quite different in yeast, as they are in human. The T32C substitution has a very severe effect in yeast, consisting in a complete inhibition of growth on nonfermentable substrates. Conversely, respiratory defects caused by the T33C mutation could only be observed in a defined genetic context. Analyses of available sequences and selected tRNA three-dimensional structures were performed to provide explanations for the different behavior of these adjacent mutations. Examination of the effects of previously identified suppressors demonstrated that overexpression of the TUF1 gene did not rescue the defective phenotypes determined by either mutation, possibly as a consequence of the lack of interactions between EF-Tu and the tRNA anticodon arm in known structures. On the contrary, both the cognate IleRS and the noncognate LeuRS and ValRS are endowed with suppressing activities toward both mutations. This allows us to extend to the tRNA(Ile) mutants the cross-suppression activity of aminoacyl-tRNA synthetases previously demonstrated for tRNA(Leu) and tRNA(Val) mutants.


Asunto(s)
Anticodón/química , Conformación de Ácido Nucleico , ARN de Transferencia de Isoleucina/química , ARN/química , Saccharomyces cerevisiae/química , Anticodón/genética , Secuencia de Bases , Genes Supresores , Humanos , Datos de Secuencia Molecular , Mutación , Fenotipo , ARN/genética , ARN Mitocondrial , ARN de Transferencia de Isoleucina/genética , Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...